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Abstract
We consider the g-Painlevé equation of type Afll) (a version of g-Painlevé V
equation) and construct a family of solutions expressible in terms of certain
basic hypergeometric series. We also present the determinant formula for the
solutions.
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1. Introduction

In this paper we consider the g-difference equation

o AU DI 4D

by f+1l
o+ 1) (o + L
7f=lw, (1.1)
s g+
_ . _ 1
bl‘zbi .=1,2,3, = t, = 0
G ) a s qb1b2b3l

where ¢ is a constant and  denotes the discrete time evolution. Equation (1.1) can also be
expressed as

)+ an)

= 1+asx (1.2)
a 1 .
x = 0RO+ a5)
l+(;—3
a=a;(i=1,23), Z=qz, z=q7p,
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where the variables are related as

1
b = a%, b, = T 5 by = alz’
qrajaxas (1.3)
as :
t=——z, f=azx, g = ajaizy.
qxaz

Equation (1.2) was first derived and identified as one of the discrete Painlevé equations with a
continuous limit to the Painlevé V equation in [21]. Sakai has classified (1.1) as the discrete
dynamical system on the rational surface of type Af‘l) which admits the symmetry of affine
Weyl group of type Ail) [31]. A geometrical structure of the T functions on the A4 weight
lattice has been investigated in [28] as well as various Biacklund transformations. In this paper,
we denote (1.1) (or (1.2)) as dP(Aftl)) following the notation that was adopted in [23]. We

also write (1.1) as dP(Afll)) [b1, by, b3] when it is necessary to specify the values of parameters
explicitly.

It is well known that the Painlevé and discrete Painlevé equations admit two classes
of particular solutions: hypergeometric solutions and algebraic solutions. In particular, the
determinant formula for the hypergeometric solutions plays an important role in applications,
for example, to the area related to matrix integration, such as random matrix theory [1-10,
25, 32]. The simplest hypergeometric solution to dP(Ajl)) has been obtained in [15, 16,
29]. The purpose of this paper is to construct hypergeometric solutions to dP(Af‘l) ) (1.1)
and present the determinant formula. In section 2, we construct the simplest hypergeometric
solution through the Riccati equation which is reduced from (1.1) by imposing a condition on
the parameters. By applying a Backlund transformation we construct complex hypergeometric
solutions and present the determinant formula in section 3. We give the proof in section 4.

2. Riccati solution

We first recall the definition of the basic hypergeometric series[11]

o0
ay,...,ar (alv‘-"ar;q)n =1 ql+s—r
Aﬁ;[ ;q,z} = (=D"q > z", 2.1
bi,..., b ;(bl,...,bs;q)n(q;@n[ ]
where
@i, ar @ = [ [ (@i @, (@ q)n = [ J(1 = ag"™). 2.2)

i=1 k=1

The simplest solution that is expressible in terms of the basic hypergeometric function is
constructed by looking for the special case in which dP(Afll)) (1.1) is reduced to the Riccati
equation. In fact, imposing the condition on (1.1)

b, =1, (2.3)
then it admits a specialization 1 + f + g = 0 to yield the Riccati equation
+1—0b — th3(1 —by) + (qt — 1
,_8 s Fe—(+g) =2 3( D+t =Df
g+1—qthbs qtb1b3+f

Linearizing the Riccati equation (2.4) by the standard technique, one obtains the following
solution (see also [15, 16, 29]).

=—q 2.4

Proposition 2.1. Let v = v (¢, by, b3) be a function satisfying

V(gt, by, b3) = b (1, by, b3) + (1 — b)Y (qt, bi/q, b3), 2.5)
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by (qt, b1, b3) = Y (1, by, b3) + (bs — )Y (1, b1, gbs), (2.6)

qtbibsy(qt, by, b3) = (qtby — )Y (1, by, b3) + Y (1, gby, b3), 2.7

qty(qt, by, b3) = (qtby — )Y (t, by, b3) + (g1, bi, b3/q). (2.8)
Then

F = qtbs(1 - bl)w(qt, bi/q, qb3) _ Y@ b, by 2.9)

Y@brgby 5T Ty b gby)
gives a solution of dP (Afll)) (1.1) with by = 1.

It should be remarked that several basic hypergeometric functions satisfy the contiguous
relations (2.5)—(2.8) [22]. For example, we have

(0
1/by,b
vt =a0n |05 i 2.10)
(i)
(qt,1/t,b3; @)oo q/b3,0
t,b1,b3) = ———M——— cq,1/th 2.11
Vb bs) = by g 20t La/iby @D
= ,1 ,1 tl, 2.12
@tbr by ) "t bibs /g T4 (12)
(i)
(b3t, q/b3t; @)oo b3/q,1/qb;
t,b1,b3) = :1/q,tby . 2.13
Vit bi bs) (qtby. qb1.q/bs: Qe 0 /4 1h 13)

In order to prove proposition 2.1 we use the following lemma.

Lemma 2.2. ¥ (t, by, b3) satisfy the contiguous relations

qtbsy(qt, by, qbs) = ¥ (1, by, b3) — (1 — qtbi1b3) Y (1, by, qb3), (2.14)
b3y (qt, by, b3) = ¥ (1/q, qbr. b3) — (1 = ) (t, by, b3). (2.15)

Proof of lemma 2.2. Eliminating ¥ (¢, b, b3) from (2.5) and (2.7), we have

(qu1b3 —qr+ bll) V(qt, by, b3) + (qtby — 1) (bl] - 1) V(qt,bi/q,b3) = ¥(t, qb, b3).
(2.16)
Similarly, eliminating ¥ (qt, b1 /q, b3) from (2.5) and (2.7), .1, ;4 We obtain
tbyb3yr (gt by, bs) — (tby*bs + 1 — by )y (. by, ba) = (1 — b)) (thy — DY (2. b1 /q. b).
(2.17)
Then eliminating ¥ (qt, b1 /g, b3) from (2.16) and (2.17),_,,, we get
(1 — g0y (qt. by, b3) +qtbsyr(q°t, by, b3) = V(1. by, bs),

which is nothing but (2.15),_, ;. Similarly, (2.14) can be derived by eliminating ¥ (¢t, b, b3)
from (2.6) and (2.8)p, b, - U
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Proposition 2.1 follows immediately from lemma 2.2. In fact, dividing (2.6) by (2.14) we
have

i W(C]tvbl,bﬂ :_E: w(t1b11b3)+(b3_1)¢(t’bl’qb3)
qt ¥ (qt, b1, gb3) qt Yt by, b3) — (1 — qth1b3) ¥ (1, b1, gb3)
—g+ (b3 —1)

T —g— (1 —qthib3)’

which is the first equation of (2.4). The second equation of (2.4) can be derived in similar
manner by dividing (2.15);— 41,5,— b, /q.b3—qbs DY (2.5)b3— ;-

3. Determinant formula and bilinear equations

3.1. Bdcklund transformations

Sakai constructed the following transformations for the homogeneous variables x, y, z of P?
and the parameters b; (i =0, 1, 2, 3,4) on the Ail) type (Mul.5) surface 311"

- bl,bz,bs_x, ) e
’ b47b0 ’ ‘y'Z

b3, by, b
( 3b1 4b2 O baxy(z+x) i baz(x +y +2)(x +byy +2) : x(x +z)2) , 3.1)
o« (Prb2bs. )
A\ baby Ty
111
<b‘ib°ib“ ihyz(x +2)(x +y +2) 1 y((z + x)(box + byz) + bayz) : box (x + z)2> , (3.2)
by’ by
(brb2 by
ws3 : by, bo Xty z
by, bybs, -
1, 0203, 5 sbax(bsx +y+b3z) i y(bsx +y+2z) :bszix+y+2) ), ((3.3)
b3by, bo
b1, by, b3 bibybs
: Xy : xiyiz), 3.4
Wi <b4,b0 * yz>'_><b4b1b0 X:iy-z (3.4)
biby-byb
wy <b11;4b21;0b3; x:iy: z) — ( ! 12941:2702 3; x:byy: bzz> ; (3.5)
by, by, b3 ) (b1b2b3b4 )
Wq Xiyrz|e ix by iz, 3.6
‘ ( baby Lbyby T G0
w0=020w1003. (37)

Introducing the variables f and g by

_ Y _x+y+2)

T oz+x’ T x(z+x) (3:8)

' Actions of these transformations are slightly modified from the original formula to be subtraction free.
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(3.1)—(3.7) can be rewritten as

1+byg
o : (bo, b1, by, b3, bs, f, g) = | ba, b3, by, by, by, b2 g, A
4
) 11 1 1 1 by(l+g)
:babab’baba P T
o' : (bo, b1, ba, b3 48)'—>(b1 b ba by by’ baf
f(bo+Dbrg) 5)

1
: (bo, by, ba, f, —, boby, boby, ,
wy : (bo, by 4fg)+—><b ob1, bobs bo(1+brg) " bo

wy : (bo, by, by) — (bobl, b1b2> (3.9
1+f+g 1+b2f+b2g
2 (b1, by, b3, f, b1by, —, bybs, b b
w2(123fg)f—><12b2 2b3 2f ¥ 7+ hg 2g1+f+b2g
ws : (b bs. by, f.g) > (babs, . bsbs, L. £
by’ b3y’ b3

1 g(1+bsf)
:b7b7b7 ) bbabbv_yb s < . ]
w4(034fg)*—><04 a1 4f. T 7 >

respectively, where the abbreviated variables are invariant with respect to the transformation.
It can be shown by direct calculation that these transformations satisfy the fundamental relation
of the (extended) affine Weyl group W (A}"):

w? =1, (wiwiz)? =1, (ww)* =1 #i,i+1), od=1, o? =1,
OW; = Wj;20, o’'wy = wyo’, o'ws = w0, o'w; = wo’, i €7/57.
(3.10)

We note that g = 1/(bob1b2b3bs) is invariant with respect to the Weyl group actions. The
translation 7y = wawsw,w o> acts on b; as

To : (bo, by, b, b3y, by) — (gqbo, b1, by, b3, bs/q), (3.11)

and the action on f and g is nothing but dP(Afll)) (1.1) for t = by and s = by. If we define
the translations 7; (i = 1, 2, 3, 4) by

T, = o Tyo?, T, = o Tyo?, T3 = 6*Tyo, Ty = 02Tyo?, (3.12)
then actions of 7; (i = 1,2, 3, 4) on the parameters are given by

Ty: (bo, b1, by, b3, bs) = (bo/q. qb1, b, b3, bs),

T»: (bo, b1, by, b3, bs) — (bo, b1/q, qba, b3, ba),

T5: (bo, b1, by, b3, bs) = (bo, b1, b2/q, qb3, bs),

Ty: (bo, b1, by, b3, bs) > (bo, b1, by, b3/q, qbs),

and one can directly verify that 7;7T; = T;7; (i, j = 0,1,2,3,i # j) and ToT\ T 13T, = 1.
Therefore, if we regard T as the discrete time evolution, 7; (i = 1, 2, 3, 4) can be regarded as
the Bécklund transformations.

(3.13)

3.2. Determinant formula

Let us apply the Biacklund transformation 7, on the Riccati solution obtained in proposition 2.1.
Applying T5N times yields the solution for dP(A{")[g Vb1, ¢", bs], which is expressed as
rational function in ¢. However, the denominator and numerator can be factorized into two
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factors, respectively, and each factor admits determinant formula. More precisely, we have
the following formula, which is the main result of this paper.

Theorem 3.1. Let Ty (¢, by, b3) (N € Z) be
det(y (1, "*'b1. q"'b3))i j=1...n (N > 0),
v, b1, b3) =41 (N =0), (3.14)
det(w(tv qj_]bls q_i+]b3))i,j=l,...,M (N =-M < 0)7
Then
Ty (t, b, qb3)tn4(qt, bi/q, gb3)
TN(qt9 bl/qv qu)TNH(t, bla qb3)
_tn(t, gby, b3) T4 (gt by, b3)
v (qt, by, b3)taei(t, gby, b3)
_ v (t, bi/q, q*b3) Ty (t, by, b3)
n(t,b1/q, qb3)tne(t, b1, gb3)
t,by,qb t,qb, b
C]l‘(b3—1)TN( 1,qb3)tn41(t, gb1, b3/q) (N <0).
TN(t, bh b3)rN+1(tv qblv b3)

satisfy dP (AY") g Vb1, ¢V, bs).

gV tbs(1 — g7 Vby)

(3.15)

We introduce a notation for simplicity
w(t,q"bi,q"b3) = Ty (). (3.16)

Theorem 3.1 for N > 0 is a direct consequence of the following proposition.

Proposition 3.2. For N > 0, ty;"" (t) satisfy the following bilinear difference equations:

(1 =g by Oty @) +q bty @yl () — g N ey Tyl (g =0, (3.17)
qtbs(1 — g Vb)ey (el () + g Ny gl () — Ty gDty (1) =0, (3.18)

gt(1 — g ¥byey eyl (g + g VeV gDy ) — g Ny ()T (g =0, (3.19)

g Ve el () — g Vb P el ()

— (1 =g Vb)) — g Ntb)y ()Ty (1) =0, (3.20)

g Ve el () — o O () + ¢V bs (1 — g Vb Ty (/) Tl (g = 0,
(3.21)

g Nery Myl ) — o O () + (L= g Vb))t M g Tl (1/q) = 0. (3.22)

In fact, theorem 3.1 for N > 0 can be derived from proposition 3.2 as follows. We have
from (3.17) by using (3.15)

L T (O @)
fHs=atbs =
Ty (gD Ty, (D)

We also have from (3.18) and (3.19)

(3.23)
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gDy (1)

f+l= qu;“(qt)rgjl(t)’ (3.24)
f+b3 =bsw, (3.25)
Ty (@D)Ty, ()
respectively. Therefore we obtain
(FHDU +b) ¢ Ty T @i Oy 0 g (3.26)

f+1 too ol oyl o e

which is the first equation of (1.1). Similarly, from (3.20),_ 4/, (3.21), 4, and (3.22),_.4; we
get

gty (qt)

l+big=¢"(1—qg Vb)) — g Vb))~ , (3.27)
o g Tyl (g
' Oty (¢%)
1+qN§ — —q2N+2tb3(1 _ qiNbl) i\’l : N+(1)1 , (328)
Ty (gD)Ty,,(q1)
N— N N+l ngl’l(qzt)fgil (1)
gt+q"g=—q" (1 —¢q thy) — 01 , (3.29)
Ty (D) Ty, (qt)
respectively. Then we have
1+b2)(1+gVNg _
g, LRG0 (3.30)

qt+q"g
which is the second equation of (1.1). Therefore, we have verified that theorem 3.1 for N > 0

follows from the bilinear equations (3.17)—(3.22) in proposition 3.2. We omit the proof for
the case of N < 0 since it can be proved in similar manner.

4. Proof of proposition 3.2

The bilinear equations (3.17)—(3.22) can be reduced to the Pliicker relations which are quadratic
identities among the determinants whose columns are properly shifted. This can be done by
constructing ‘difference formulae’ that relate the ‘shifted” determinants with zy,"" (¢) by using
the contiguous relations of ¢. This technique has been developed in [26, 27] and applied to
various discrete Painlevé equations [12—-14, 17-20, 24, 25, 30]. In this section, we prove the
bilinear equation (3.17) as an example. Since other bilinear equations (3.18)—(3.22) can be
proved in similar manner, we leave the details in the appendix.
We first introduce the following notation:

Ty (1)
¥(t,q"b1,q"b3) V(t,q" b1, q"b3) vt q" Vb, q"bs)
V(t, q"b1, ¢"'b3) V(t,q" b1, q"by) o Yt "N by, g™ bs)
V(g b1 " b)Y g" g N ) e (g by g Y )

Wonn () Wno1n(®) o Wnns1a (D) |, 4.1
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where ¥, ,(t) denotes a column vector

Y(t,q"b1,q"b3)

Y (t,q9"bi, q""b3)

\I’lm,n (t) = (42)

Y (t,q"b1, q" N ""bs)

Here we note that the height of the column vector is N, but we use the same symbol for the
column vector with different height. Then we have the following difference formula.

Lemma 4.1. Noo .
—0 (@" b1 = 1) n
|\I’m,n(t) \pm,n(t/Q) \ymfN+2,n(t/Q)| = ]_[k(N(il)(Zm—Nd) bN,I TNY (t)’ (43)
q 2 1

N=2, m—k

= (q bl - 1) m,n
s /D) W10 ®) Y 1a0/q) W anli/)] = =L O

q 2 1

4.4)

Proof. Using the contiguous relation (2.5) on the Nth column of the determinant in (4.1), we

have
rlr\);,n (t) = |\Ijm,n(t) “pm—l,n(t) e “Ijm—N+2,n(t) \Ijm—N+1,n(t)|
—WyNa2a () + @V W N2 (/)
= W) - Wy (®) Lot S TT— L
quN+2b1
= m'wm,n(t) o Wneoan () Waone2a (/9]

Applying this procedure from the Nth column to the second column we obtain

W-hEm-N+2) | N_]
2 bl

[Ti (g by — 1)

which is nothing but (4.3). At the stage where the above procedure has been applied up to the
third column, we have by using (2.5) on the first column

r[r\t;,n (t) = |lem,n (t) \Ilm,n(t/q) te lIIm—N+2,n (f/q)|, (45)

(N=2)2m—N+1) _

[ (gm*by — 1)

N-2@m-N+) , N _»
q 2 b

T]’\’/Ln (t) = |\Ijm,n(t) LIjmfl.n(t) LIjmfl.n(t/q) Tt \IjmfN+2,n(t/q)|
N-2

l_[ (qukbl _ 1)

k=1

X |qmb1q’m,n(l/q) - (qmbl - ])\Ilmfl,n(t) \Ilmfl,n(t) \Ilmfl,n(t/q)
"I’[m—N+2,n(t/q)|

B wb{v%
i (g Ry — 1)
X |\I’m,n(t/Q) \I’m—l,n(t) \I’m—l,n(t/q) T qjm_N*'z’”(t/q)" (4.6)

which is (4.4). This completes the proof. (|
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Now consider the Pliicker relation

0=1Ynsrn(t/q) Wnn@) Wnnlt/q) -+ Wu_ni3a(t/q)l
X Wonn(t/q) - WnnNe3n(/q)  WYm-ns2a(t/q) @
Wit n (/D) Y )D) o W na3n (1)@ Wy (/)]
X W) W t/q) - Wnnasa(t/q) 9]
Wit t/) Wnnt/q) - Wnisa(t/q) @
$ W () Wn/q) - W nian (/) W nian(t/)], 4.7
where ¢ is the column vector
0
=11 4.8)
0
1

Applying lemma 4.1 to (4.7) we have
o O @/ g) = " by )Ty ()

AR O DL LA ORI
Putting N - N+1,t — gqt,m = —1 and n = 1 we obtain (3.17).
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Appendix A. Proof of bilinear equations

In this appendix we prove the bilinear equations (3.18)—(3.22). We first note that 7y " (¢)
admits various determinantal expressions, which play an important role in proving the bilinear
equations. Taking the transpose of the right-hand side of (4.1), we have

~

() = W () Byt () - Uy w1 (1)), (A.1)
where
Y(t,q"b1,q"b3)
V(t, q" b1, q"b3)

U () = . : (A2)
Y, q" by, q"b3)
It is also possible to express 7y " (¢) by the determinants with different structure of shifts.

Lemma A.1. 7y"(¢) can be expressed as follows:

N—-1 n+k—1 N—k
m,n q b3
I (t):H( n+k—1 )
PEEUARE R
X |\Ilm,n(t) Wn (qt) --- "Ijm,n(qN_ltN (A.3)
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N— k+1b N—k
H( m— k+1b] _1)

k=1
X W (1) Wit @)+ W1 ()] (A.4)
n+k—1 N—k mjmbl N
0 T ()
X [ Wy (1) wm,m(q—lt) o Uen—1(g VD), (A5)

where the column vectors are given by

VY (t,q"by, q"b3) Y (t,q"by, q"b3)
. V(g™ 't,q"b1, q"b3) N Y (qt,q"bi, q"b3)
\Ijm.n (t) = . 5 \Ijm,n(t) = . s (A6)
V(g ", q"by, q"b3) V(g 't q" by, q"b3)

respectively.

Proof. We prove (A.3). Using the contiguous relation (2.6) to the Nth column of the right-hand
side of (A.1), we get

: ~ ~ ~ q"N b3 2 (qt) — N—2(1)
r[l\’)]’l (1) = Wyn(®) W1 () - Wy pen—2(t) man:;N 2py—1 Y
qn+N72 3 - - - -
= W|\I’m,n (t) \Ilm,n+1 (t) e qjm,n+N—2(Z) \I”m,n+N—2(qt)|-
s —
Applying this procedure up to the second column, we have
N-1 qn+k71b3 - - - -
fjr\’/q’n(t) = qu_k_lﬁ“pm,n(t) W n (qt) --- “Ijm,n+N—3(qt) lI’m,n+N—2(qt)|-
3 —

k=1

Continuing this procedure we obtain

N-L k-1 N g n
. q by b; q"bs
Ty ([)—( q”+k—1b3—l) (1—[ n+k— 1b3_l)X~-~x<qnb3_l)

k=1 i
X |\Tl’71”(t) {Ijmn(qt) m,n(qN 2t) {I’m,n(qN_ll‘)l
n+k lb N—k
_H< ntk— 1b3—1>
<T@ Talgn) - Tua@" 1) Bnlg™ 0,

which is (A.3). As to (A.4) and (A.5) we omit the details and only describe the method, since
one can prove them by the similar calculations. In order to prove (A.4), we use the contiguous
relation (2.5) on (4.1) repeatedly. For (A.5), we use (2.5) on (A.3) to express r;',q’"(t) by
the determinant in which ¢ is shifted in both horizontal and vertical directions. Finally, we
use (2.6) on this determinant to derive (A.5). O

Now the bilinear equations (3.18)—(3.22) can be proved by the same procedure as that
in section 4. Therefore, we do not repeat the procedure, but give the list of data which are
necessary for proof of each bilinear equation.
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Equation (3.18)

(i) Expression of 7y,": (A.1)
(i1) Difference formula

l{rlm,n(t) {Ivjmfl,n+1(qt) T \ijfl,n+Nfl(qt)|
1
m " (), (A7)
(N 1)(2 N)( b3)N 11_[k 01 (qmikbl _ 1) N
|{I\‘;m—1,n+l(qt) \Ijm,n+l (t) “Ilm—l,n+2(qt) e {rlm—l,n+N—l(qt)|
1 m,n
== (N D) Ty (D), (A.8)

(tb)N Ty (g™ *by — 1)
where
7TV (t.q"b1.q"b3)
W, () = : . (A.9)
i (6, gV by, ")
(iii) Contiguous relation to be used for derivation of difference formula
Y (t, b1, qb3) = ¥ (t, b1, b3) + qtbs(by — D (qt, bi/q, qb3). (A.10)

(A.10) can be derived by eliminating v (gt, by, gb3) from (2.5)5,_.4p, and (2.14).
(iv) Pliicker relation

0=1W_1,(qt) Cpn(®) Woini(qt) - Wi n—a(gh)l
X W11 (@) W 1s2(@t) - W ain_1(qt) |
U 1(q) W ia1(@) o W en—1(q0)]
X Wy (1) Wi ii1(qt) o Wi man—a(qt) @]
W1 (@) Ui ari(q) - B en—a(qt) ¢
X Wy (1) Wi (@) Wy o1 (@) (A.11)
where
1
0
o =1.1. (A.12)
0

Equation (3.19)

(i) Expression of 7y": (A.1)
(i1) Difference formula

lN_l

[Tiog (g by — 1)

G (6) Wit /@) By (/)] = (1), (A.13)
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|(I?m,n+1(t/q) lrm,n+1(l‘) \im,n+2(t/q) e \im,n+N—1(t/q)|
lN_2
=—— T (p), (A.14)
T (@b =) ™

where

—Y(t,q"b1, q"D
"1hy — [V (t.qa"bi.q"by)
B0 (6) = : . (A.15)

Ww(t’ qm—N+lb] , qnb3)

(iii) Contiguous relation to be used for derivation of difference formula (2.8)
(iv) Pliicker relation

0=1Unnt/q) Vun® Fpnart/q) -+ Upun_a(t/q)]
$ W1 (/) W2 (t/q) -+ Cpen—1(t/q) ¢
B (t/9) Vi1 (t/q) - Cpen-1(t/q)|
< Unn() Ui /) - Unpanalt/q) @]
P (t/0) Vi1 (t/q) -+ Wnn—2(t/q) @]
< Wnn (@) Ui /) -+ Tppan1(t/q)] (A.16)

(v) Derivation of (3.19): applying the difference formula to the Pliicker relation we have

qry " Oyt (@) + (1= qtb) Ty (gD Tyl () — Ty P 0T (gn) = 0. (A.17)

We obtain (3.19) by eliminating the term t,, "' () zy,, (¢1) from (3.17) and (A.17).
Equation (3.20)

(i) Expression of 7y;": (4.1)
(ii) Difference formula

|\I’[m,n (t) ‘Dm,nfl(t) e \DmfN+2,nfl([)|
[150 (@ by = (0 = g"Feby) .,
= e (), (A.18)
2 bl
I“Ilm,nfl(t) “Ilmfl,n(t) “Ilmfl,nfl(t) \I}mfN+2,n71(t)|
N=2 m—k m—k
1 (@"7"by = DA —q""thy) ,,,
=== DN, No] Ty (D). (A.19)
qg 2 b

(iii) Contiguous relation to be used for derivation of difference formula

_ Y6, by, b3) — biy(t, by, b3/q)
Y(t,bi/q, b3) = A= b0 =15 . (A.20)

(A.20) can be derived by eliminating v (¢ /g, by, b3) from (2.5);_,;/4 and (2.8);/4.




Hypergeometric solutions to the g-Painlevé equation of type Ail) 12521

(iv) Pliicker relation

0= Wns1n-1() Wi (@) Wpn1(t) - Wy n-1(0)]
X Wyn1 (@) o W N1 (t) Woni2a-1() @
= Wnrtn—1@) W1 () - WpoNi3 a1 (1) Wy ni2n—1(1)]
X (Wyn(t) Wn—1(t) o+ Wynizn-1() @
| Wnstn—1(t) W1 () - W nizaa(t) @
X W n(t) Winn—1() -+ Wponizn—1(t)  Wions2a—1(D)]. (A21)

Equation (3.21)

(i) Expression of 7,;": (A.4)
(i1) Difference formula

|\VIJm,n(t) ‘Ilm—l,nﬂ(qt) e ‘:I:'m—l,n+N—1(qt)|
N—1 4"+, k=N
= (q"1b3(¢"by — 1))17N1_[ (m) " (@), (A.22)
k=1
|\me—1,n+l(qt) {pm,n+l (t) \i’[m—l.n+2(qt) e {I}m—l,n+N—l(qt)|
N—1 qm,/ﬁ_lbl k—N
= —(q"tb3(q"b — 1))17N1_[ (W) " (1), (A.23)
| —
k=1
where
¥ (q't,q" b1, q"b3)

q¥(q'~"t, q"by, q"b3)

U, (g't) = (A.24)

g" ' W(g' N, g by, q"bs)
(iii) Contiguous relation to be used for derivation of difference formula

Y (t, by, qbs) = Y (1, by, b3) + qtbs(by — D (qt, bi/q, qb3).  (A.25)

(A.25) can be derived by eliminating ¥ (g, by, gb3) from (2.5),_.4p, and (2.14).
(iv) Pliicker relation

0=19, 1,0 V@) Unrani@D) - Uuoiaanalgn)
X Wit (@) o Witn—2(qt) W iaen—1(qt) @]
—W1n(@) Wi qt) o Wiwen—2(q)  Waiaen—1(q0)]
<) Ui (@) o+ Bt enalgt) ]
W 1a(@) Wi (@) o Wniav—a(qt) @]
<) Ui (@) o B en (gt | (A.26)

Equation (3.22)
(i) Expression of 75" (A.5)
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(i1) Difference formula

|®m,n(t) 6mfl,n+1(t) e ®m71,n+N71(q_N+2t)|
N—1
bay-1) m _ nak— _
= (=17 (qt(g"b; — 1)) NH(q el N
k=1
Nl m—k+1 k=N
4 bl m,n
q" b — 1 m ), A27
X]!j[l(quﬂbl_l) N () ( )
I@m—l,rﬁl(t) ﬁm,rﬁl(l‘/q) am—l,nﬂ(l‘/q) am—l,n+N—l(CI—N+2t)|
N—1
N(N=1) m 3 o -
=—(—-1) 2 bl—l))l Nl_[(q +k 1b3)k N
k=1
m k+1b k—N
X l_[ ( m— k+1b 1> T]'\r/l’n(t), (A28)
|-
where

v (q't,q"by, q"b3)
q—l w(ql+lt, qmbl, qan)

\Ilm,n(qlt) = . . (A29)
q_NHlﬂ(qHN_ll, q’”bh q”b3)
(iii) Contiguous relation to be used for derivation of difference formula
¢(I, by, b3) = I/f(ql, by, b3/q) + ql(bl — 1)1//(ql‘, bl/q, b3). (A30)

(A.30) can be derived by eliminating 1 (gt, by, b3) from (2.5) and (2.8).
(iv) Pliicker relation

0=1U,_1,.(q1) m st () W in—a(g VP
< W11 (1) - Ui 2(@ V) W1 (@ 7N @
~ W1 (@) U1 o U en—2(g V0
Uyt nen-1(q =N 20)]
Ty () Bt o Bt n2(g VB0 @]
W10 (@) Uit @ o Bpppan2(@ N @]
Ty () Ui @ -+ Gy aya(@ V20l (A31)
(v) Derivation of (3.22): applying the above difference formula to the Pliicker relation we
have
oy @0T /) + (=g by O 0 — 5y P OTy 0 =0 (A3Y)

We obtain (3.22) by eliminating the term ty' (r)7y1;' () from (3.20) and (A.32).

This completes the proof of proposition 3.2.
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